Subscribe to receive notifications of new posts:

Query Cloudflare Radar and our docs using ChatGPT plugins


7 min read

When OpenAI launched ChatGPT plugins in alpha we knew that it opened the door for new possibilities for both Cloudflare users and developers building on Cloudflare. After the launch, our team quickly went to work seeing what we could build, and today we’re very excited to share with you two new Cloudflare ChatGPT plugins – the Cloudflare Radar plugin and the Cloudflare Docs plugin.

The Cloudflare Radar plugin allows you to talk to ChatGPT about real-time Internet patterns powered by Cloudflare Radar.

The Cloudflare Docs plugin allows developers to use ChatGPT to help them write and build Cloudflare applications with the most up-to-date information from our documentation. It also serves as an open source example of how to build a ChatGPT plugin with Cloudflare Workers.

Let’s do a deeper dive into how each of these plugins work and how we built them.

Cloudflare Radar ChatGPT plugin

When ChatGPT introduced plugins, one of their use cases was retrieving real-time data from third-party applications and their APIs and letting users ask relevant questions using natural language.

Cloudflare Radar has lots of data about how people use the Internet, a well-documented public API, an OpenAPI specification, and it’s entirely built on top of Workers, which gives us lots of flexibility for improvements and extensibility. We had all the building blocks to create a ChatGPT plugin quickly. So, that's what we did.

We added an OpenAI manifest endpoint which describes what the plugin does, some branding assets, and an enriched OpenAPI schema to tell ChatGPT how to use our data APIs. The longest part of our work was fine-tuning the schema with good descriptions (written in natural language, obviously) and examples of how to query our endpoints.

Amusingly, the descriptions ended up much improved by the need to explain the API endpoints to ChatGPT. An interesting side effect is that this benefits us humans also.

    "/api/v1/http/summary/ip_version": {
        "get": {
            "operationId": "get_SummaryIPVersion",
            "parameters": [
                    "description": "Date range from today minus the number of days or weeks specified in this parameter, if not provided always send 14d in this parameter.",
                    "required": true,
                    "schema": {
                        "type": "string",
                        "example": "14d",
                        "enum": ["14d","1d","2d","7d","28d","12w","24w","52w"]
                    "name": "dateRange",
                    "in": "query"

Luckily, itty-router-openapi, an easy and compact OpenAPI 3 schema generator and validator for Cloudflare Workers that we built and open-sourced when we launched Radar 2.0, made it really easy for us to add the missing parts.

import { OpenAPIRouter } from '@cloudflare/itty-router-openapi'

const router = OpenAPIRouter({
  aiPlugin: {
    name_for_human: 'Cloudflare Radar API',
    name_for_model: 'cloudflare_radar',
    description_for_human: "Get data insights from Cloudflare's point of view.",
      "Plugin for retrieving the data based on Cloudflare Radar's data. Use it whenever a user asks something that might be related to Internet usage, eg. outages, Internet traffic, or Cloudflare Radar's data in particular.",
    contact_email: '[email protected]',
    legal_info_url: '',
    logo_url: '',

We incorporated our changes into itty-router-openapi, and now it supports the OpenAI manifest and route, and a few other options that make it possible for anyone to build their own ChatGPT plugin on top of Workers too.

The Cloudflare Radar ChatGPT is available to non-free ChatGPT users or anyone on OpenAI’s plugin's waitlist. To use it, simply open ChatGPT, go to the Plugin store and install Cloudflare Radar.

Once installed, you can talk to it and ask questions about our data using natural language.

When you add plugins to your account, ChatGPT will prioritize using their data based on what the language model understands from the human-readable descriptions found in the manifest and Open API schema. If ChatGPT doesn't think your prompt can benefit from what the plugin provides, then it falls back to its standard capabilities.

Another interesting thing about plugins is that they extend ChatGPT's limited knowledge of the world and events after 2021 and can provide fresh insights based on recent data.

Here are a few examples to get you started:

"What is the percentage distribution of traffic per TLS protocol version?"

"What's the HTTP protocol version distribution in Portugal?"

Now that ChatGPT has context, you can add some variants, like switching the country and the date range.

“How about the US in the last six months?”

You can also combine multiple topics (ChatGPT will make multiple API calls behind the scenes and combine the results in the best possible way).

“How do HTTP protocol versions compare with TLS protocol versions?”

Out of ideas? Ask it “What can I ask the Radar plugin?”, or “Give me a random insight”.

Be creative, too; it understands a lot about our data, and we keep improving it. You can also add date or country filters using natural language in your prompts.

Cloudflare Docs ChatGPT plugin

The Cloudflare Docs plugin is a ChatGPT Retrieval Plugin that lets you access the most up-to-date knowledge from our developer documentation using ChatGPT. This means if you’re using ChatGPT to assist you with building on Cloudflare that the answers you’re getting or code that’s being generated will be informed by current best practices and information located within our docs. You can set up and run the Cloudflare Docs ChatGPT Plugin by following the read me in the example repo.

The plugin was built entirely on Workers and uses KV as a vector store. It can also keep its index up-to-date using Cron Triggers, Queues and Durable Objects.

The plugin is a Worker that responds to POST requests from ChatGPT to a /query endpoint. When a query comes in, the Worker converts the query text into an embedding vector via the OpenAI embeddings API and uses this to find, and return, the most relevant document snippets from Cloudflare’s developer documentation.

The way this is achieved is by first converting every document in Cloudflare’s developer documentation on GitHub into embedding vectors (again using OpenAI’s API) and storing them in KV. This storage format allows you to find semantically similar content by doing a similarity search (we use cosine similarity), where two pieces of text that are similar in meaning will result in the two embedding vectors having a high similarity score. Cloudflare’s entire developer documentation compresses to under 5MB when converted to embedding vectors, so fetching these from KV is very quick. We’ve also explored building larger vector stores on Workers, as can be seen in this demo of 1 million vectors stored on Durable Object storage. We’ll be releasing more open source libraries to support these vector store use cases in the near future.

So ChatGPT will query the plugin when it believes the user’s question is related to Cloudflare’s developer tools, and the plugin will return a list of up-to-date information snippets directly from our documentation. ChatGPT can then decide how to use these snippets to best answer the user’s question.

The plugin also includes a “Scheduler” Worker that can periodically refresh the documentation embedding vectors, so that the information is always up-to-date. This is advantageous because ChatGPT’s own knowledge has a cutoff of September 2021 – so it’s not aware of changes in documentation, or new Cloudflare products.

The Scheduler Worker is triggered by a Cron Trigger, on a schedule you can set (eg, hourly), where it will check which content has changed since it last ran via GitHub’s API. It then sends these document paths in messages to a Queue to be processed. Workers will batch process these messages – for each message, the content is fetched from GitHub, and then turned into embedding vectors via OpenAI’s API. A Durable Object is used to coordinate all the Queue processing so that when all the batches have finished processing, the resulting embedding vectors can be combined and stored in KV, ready for querying by the plugin.

This is a great example of how Workers can be used not only for front-facing HTTP APIs, but also for scheduled batch-processing use cases.

Let us know what you think

We are in a time when technology is constantly changing and evolving, so as you experiment with these new plugins please let us know what you think. What do you like? What could be better? Since ChatGPT plugins are in alpha, changes to the plugins user interface or performance (i.e. latency) may occur. If you build your own plugin, we’d love to see it and if it’s open source you can submit a pull request on our example repo. You can always find us hanging out in our developer discord.

Watch on Cloudflare TV

We protect entire corporate networks, help customers build Internet-scale applications efficiently, accelerate any website or Internet application, ward off DDoS attacks, keep hackers at bay, and can help you on your journey to Zero Trust.

Visit from any device to get started with our free app that makes your Internet faster and safer.

To learn more about our mission to help build a better Internet, start here. If you're looking for a new career direction, check out our open positions.
Developer WeekChatGPTAIOpenAICloudflare WorkersDevelopersDeveloper Platform

Follow on X

Ricky Robinett|@rickyrobinett
Celso Martinho|@celso
Michael Hart|@hichaelmart

Related posts